(資料圖)
ChatGPT是一款由美國(guó)OpenAI公司開發(fā)的自然語(yǔ)言人機(jī)交互應(yīng)用,擁有接近人類水平的語(yǔ)言理解和生成能力,是迄今為止人工智能領(lǐng)域最成功的產(chǎn)品和歷史上用戶增長(zhǎng)速度最快的應(yīng)用程序。ChatGPT依賴大模型、大數(shù)據(jù)、大算力支撐,其出現(xiàn)標(biāo)志著通用人工智能的起點(diǎn)和強(qiáng)人工智能的拐點(diǎn),是里程碑式的技術(shù)進(jìn)步,將引發(fā)新一輪人工智能革命。
國(guó)內(nèi)人工智能“大模型”已具備一定基礎(chǔ),但與ChatGPT還存在一定差距,其背后面臨數(shù)據(jù)、算力和創(chuàng)新環(huán)境等深層次制約。需從戰(zhàn)略高度重視ChatGPT引發(fā)的新一輪人工智能革命,瞄準(zhǔn)大模型、整合大數(shù)據(jù)、布局大算力,實(shí)施包容審慎監(jiān)管,為新事物發(fā)展留足空間,加快搶占未來(lái)科技競(jìng)爭(zhēng)制高點(diǎn)。
ChatGPT具有里程碑意義
將引發(fā)新一輪人工智能革命
ChatGPT (Chat Generative Pre-trained Transformer,聊天生成型預(yù)訓(xùn)練轉(zhuǎn)換模型) 是一款由美國(guó)OpenAI公司開發(fā)的自然語(yǔ)言人機(jī)交互應(yīng)用,擁有接近人類水平的語(yǔ)言理解和生成能力,因其出色的回答問(wèn)題、創(chuàng)作內(nèi)容、編寫代碼等能力,使得人們直觀真切地體會(huì)到人工智能技術(shù)進(jìn)步帶來(lái)的巨大變革和效率提升,上線5天用戶突破100萬(wàn),兩個(gè)月活躍用戶突破1億,是迄今為止人工智能領(lǐng)域最成功的產(chǎn)品和歷史上用戶增長(zhǎng)速度最快的應(yīng)用程序。 ChatGPT是一個(gè)經(jīng)過(guò)長(zhǎng)期技術(shù)儲(chǔ)備、通過(guò)大量資源投入、帶有一定成功偶然性的人工智能“核爆點(diǎn)”。 ChatGPT的發(fā)展經(jīng)歷了3個(gè)階段 (如下圖所示) ,前期GPT-1 (2018年) 、GPT-2 (2019年) 、GPT-3 (2020年) 等版本已經(jīng)投入了大量資源 (包括購(gòu)買高性能芯片、雇傭數(shù)據(jù)標(biāo)注人員、占用計(jì)算資源等) ,效果并不理想,后期在采用“基于強(qiáng)化學(xué)習(xí)的人類反饋學(xué)習(xí)”技術(shù)后發(fā)生“蝶變”,迅速成為爆款應(yīng)用。 圖ChatGPT發(fā)展路徑 ChatGPT關(guān)鍵在于“三大支撐”。 一是“大模型” 。全稱是“大語(yǔ)言模型” (Large Language Model) ,指參數(shù)量龐大 (目前規(guī)模達(dá)千億級(jí)) 、使用大規(guī)模語(yǔ)料庫(kù)進(jìn)行訓(xùn)練的自然語(yǔ)言處理模型,是ChatGPT的“靈魂”。 二是“大數(shù)據(jù)” 。GPT-1使用了約7000本書籍訓(xùn)練語(yǔ)言模型。GPT-2收集了Reddit平臺(tái) (美國(guó)第五大網(wǎng)站,功能類似于國(guó)內(nèi)的百度貼吧) 800多萬(wàn)個(gè)文檔的40GB文本數(shù)據(jù)。GPT-3使用維基百科等眾多資料庫(kù)的高質(zhì)量文本數(shù)據(jù),數(shù)據(jù)量達(dá)到45TB,是GPT-2的1150倍。 三是“大算力” 。以GPT-3為例,其參數(shù)量達(dá)1750億,采用1萬(wàn)顆英偉達(dá)V100 GPU組成的高性能網(wǎng)絡(luò)集群,單次訓(xùn)練用時(shí)14.8天,總算力消耗約為3640PF-days (假如每秒進(jìn)行一千萬(wàn)億次計(jì)算,需要3640天) 。 ChatGPT標(biāo)志著里程碑式的技術(shù)進(jìn)步。 一是在最具挑戰(zhàn)性的自然語(yǔ)言處理領(lǐng)域?qū)崿F(xiàn)了革命性突破。 相比視頻、圖像、語(yǔ)音等,自然語(yǔ)言的語(yǔ)法、語(yǔ)義、邏輯復(fù)雜,存在多樣性、多義性、歧義性等特點(diǎn)。文本數(shù)據(jù)稀缺,通常表現(xiàn)為非結(jié)構(gòu)化的低質(zhì)量數(shù)據(jù)。自然語(yǔ)言處理任務(wù)種類繁多,包括語(yǔ)言翻譯、問(wèn)答系統(tǒng)、文本生成、情感分析等。因此,長(zhǎng)期以來(lái)自然語(yǔ)言處理被認(rèn)為是人工智能最具挑戰(zhàn)性的領(lǐng)域。ChatGPT不僅實(shí)現(xiàn)了高質(zhì)量的自然語(yǔ)言理解和生成,并且能夠進(jìn)行零樣本學(xué)習(xí)和多語(yǔ)言處理,為自然語(yǔ)言處理領(lǐng)域帶來(lái)了前所未有的突破。 二是標(biāo)志著通用人工智能的起點(diǎn)。 在此之前,人工智能在不同場(chǎng)景應(yīng)用需要訓(xùn)練不同模型。而ChatGPT利用單一大模型即可完成人機(jī)對(duì)話、機(jī)器翻譯、編碼測(cè)試等多種任務(wù),已經(jīng)具備通用人工智能的一些核心技術(shù)和特征:能夠自動(dòng)化地學(xué)習(xí)各種知識(shí)、信息,不斷自我優(yōu)化;充分理解和流暢表達(dá)人類語(yǔ)言,邏輯推理強(qiáng),實(shí)現(xiàn)了具備一般人類智慧的機(jī)器智能;擁有一定的自適應(yīng)和遷移學(xué)習(xí)能力,可以適用于多種應(yīng)用場(chǎng)景和任務(wù)。 三是代表著強(qiáng)人工智能的拐點(diǎn)。 ChatGPT證明了大模型的學(xué)習(xí)和進(jìn)化能力,將推動(dòng)強(qiáng)人工智能 (機(jī)器擁有知覺(jué)和意識(shí),有真正的推理和解決問(wèn)題的能力) 加速演進(jìn)。目前大模型智能程度已接近人類水平,甚至一些業(yè)界人士認(rèn)為,將來(lái)會(huì)逐漸產(chǎn)生自我認(rèn)知和感知,進(jìn)而出現(xiàn)意識(shí)并且超越人類。 全球通用人工智能技術(shù)加速演進(jìn)。ChatGPT涉及到“三大”中的“大模型”是核心和獨(dú)門秘籍。當(dāng)前,隱藏在ChatGPT背后的“大模型”正越來(lái)越多進(jìn)入人們的視野。 國(guó)際上已掀起從“大煉模型”到“煉大模型”的技術(shù)熱潮。 OpenAI公司將繼續(xù)推進(jìn)ChatGPT的模型演進(jìn),目前已發(fā)布多模態(tài)預(yù)訓(xùn)練大模型GPT-4,實(shí)現(xiàn)了幾個(gè)方面躍升:強(qiáng)大的圖像識(shí)別能力;文字輸入上限提升到2.5萬(wàn)字;回答問(wèn)題準(zhǔn)確性明顯提高;可以生成創(chuàng)意文本、歌詞,實(shí)現(xiàn)風(fēng)格變化等。谷歌創(chuàng)設(shè)了1370億參數(shù)級(jí)大型自然語(yǔ)言對(duì)話模型LaMDA。當(dāng)前正加快推出基于LaMDA的聊天機(jī)器人Bard,并動(dòng)員全公司開展內(nèi)測(cè)。微軟與英偉達(dá)合作推出了5300億參數(shù)的MT-NLG模型,與兩家公司之前各自的系統(tǒng)相比,優(yōu)點(diǎn)在于更加擅長(zhǎng)各種自然語(yǔ)言任務(wù),例如自動(dòng)生成句子、問(wèn)答、閱讀和推理、詞義消岐等。Meta公司復(fù)現(xiàn)了GPT-3,并對(duì)所有社區(qū)免費(fèi)開放。以ChatGPT為代表的人工智能大模型滲透到各行各業(yè),將引發(fā)新一輪人工智能革命。從本質(zhì)上看,ChatGPT是一個(gè)“大模型” (參數(shù)量巨大的概率模型) ,其成功實(shí)踐充分證明了作為通用技術(shù)的大模型在人類社會(huì)各個(gè)方面布局應(yīng)用的潛力。 一是成功探索了大模型的商業(yè)模式。 ChatGPT已經(jīng)應(yīng)用于商用搜索引擎和辦公軟件,嵌入GPT-3.5的微軟必應(yīng)搜索引擎可以更好理解和響應(yīng)用戶查詢,提供更準(zhǔn)確的搜索結(jié)果,嵌入GPT-4的Office軟件大幅提升了辦公效率。 二是短期來(lái)看大模型將替代服務(wù)業(yè)的一些工作。 ChatGPT可以完成各類文本生成任務(wù),替代行政管理人員、科研人員、法律行業(yè)人士、媒體從業(yè)者、客服人員的部分工作。能夠編碼、檢測(cè)安全漏洞,替代軟件工程師的一些工作??梢愿哔|(zhì)量完成語(yǔ)言間的轉(zhuǎn)換,替代翻譯人員的部分工作。 三是隨著大模型不斷滲透,人們的生產(chǎn)生活方式將發(fā)生深刻變革。 在不久的將來(lái),廣泛開發(fā)應(yīng)用的大模型將以超出人類的速度和準(zhǔn)確性來(lái)執(zhí)行自動(dòng)化生產(chǎn)、智能制造任務(wù),賦能交通、醫(yī)療、金融等各個(gè)行業(yè)。這將會(huì)引發(fā)以強(qiáng)人工智能和通用人工智能為代表的新一輪智能革命,大幅提高生產(chǎn)效率,帶來(lái)經(jīng)濟(jì)、社會(huì)和產(chǎn)業(yè)的深刻變革。
表ChatGPT主要應(yīng)用場(chǎng)景
我國(guó)人工智能“大模型”
現(xiàn)狀與面臨的問(wèn)題
國(guó)內(nèi)大模型已具備一定基礎(chǔ),但與ChatGPT還存在一定差距。一是百度自主研發(fā)的“文心”大模型,參數(shù)規(guī)模達(dá)2600億,已在能源、金融、制造等領(lǐng)域發(fā)布了11個(gè)行業(yè)大模型。二是阿里達(dá)摩院推出10萬(wàn)億參數(shù)的多模態(tài)M6大模型。三是華為與鵬城實(shí)驗(yàn)室合作開發(fā)的盤古大模型,是首個(gè)全開源2000億參數(shù)中文預(yù)訓(xùn)練語(yǔ)言模型,在知識(shí)問(wèn)答、知識(shí)檢索、知識(shí)推理、閱讀理解等文本生成領(lǐng)域表現(xiàn)突出。四是北京智源人工智能研究院推出1.75萬(wàn)億參數(shù)的悟道2.0,可以同時(shí)處理中英文和圖片數(shù)據(jù)。浪潮和中科院也分別推出了相應(yīng)的大模型等。 從技術(shù)能力來(lái)看,專家判斷當(dāng)前國(guó)內(nèi)技術(shù)比ChatGPT主要差在大模型環(huán)節(jié),包括清洗、標(biāo)注、模型結(jié)構(gòu)設(shè)計(jì)、訓(xùn)練推理的技術(shù)積累。ChatGPT背后是文本/跨模態(tài)大模型、多輪對(duì)話、強(qiáng)化學(xué)習(xí)等多技術(shù)的融合創(chuàng)新,而國(guó)內(nèi)大部分科技企業(yè)、科研院所多聚焦垂直應(yīng)用,缺乏多技術(shù)融合創(chuàng)新能力。從落地應(yīng)用來(lái)看,國(guó)內(nèi)頭部企業(yè)均表示已開展相關(guān)技術(shù)研發(fā)或部分模型進(jìn)入內(nèi)測(cè)階段,但仍未出現(xiàn)與ChatGPT抗衡的大模型產(chǎn)品。加之大模型的訓(xùn)練成本較高,技術(shù)應(yīng)用面臨著億元級(jí)研發(fā)投入和海量訓(xùn)練試錯(cuò),國(guó)內(nèi)企業(yè)投入嚴(yán)重不足,研發(fā)推廣和產(chǎn)業(yè)落地整體落后于海外。 差距背后存在深層次制約因素,或使中美“大模型”差距進(jìn)一步拉大,主要表現(xiàn)為三個(gè)“缺少”: 缺少高質(zhì)量訓(xùn)練數(shù)據(jù)。 GPT-3模型訓(xùn)練需要的語(yǔ)料75%是英文,3%是中文,還有一些西班牙文、法文、德文等語(yǔ)料集,這些學(xué)習(xí)語(yǔ)料可通過(guò)公開數(shù)據(jù) (如維基百科、百度百科、微博、知乎等) 、開源數(shù)據(jù)集、網(wǎng)頁(yè)爬?。? 訓(xùn)練GPT-3爬取了31億個(gè)網(wǎng)頁(yè),約3000億詞) 、私有數(shù)據(jù)集 (如OpenAI的WebText數(shù)據(jù)集,收集了Reddit平臺(tái)上的800萬(wàn)篇高贊文章,約150億詞) 等方式獲取。這些語(yǔ)料中,英文語(yǔ)料公開數(shù)據(jù)更多、質(zhì)量更高。中文開源高質(zhì)量數(shù)據(jù)少,特別是構(gòu)建通用領(lǐng)域大模型的百科類、問(wèn)答類、圖書文獻(xiàn)、學(xué)術(shù)論文、報(bào)紙雜志等高質(zhì)量中文內(nèi)容。同時(shí),國(guó)內(nèi)專業(yè)數(shù)據(jù)服務(wù)還處于起步階段,可用于人工智能模型訓(xùn)練的經(jīng)過(guò)加工、清洗、標(biāo)注的高質(zhì)量數(shù)據(jù)集還相對(duì)匱乏。缺少高質(zhì)量訓(xùn)練數(shù)據(jù)已成為國(guó)內(nèi)大模型訓(xùn)練的核心痛點(diǎn)。 缺少充足的智能算力支撐。 一是大模型訓(xùn)練和運(yùn)營(yíng)算力成本高昂。訓(xùn)練階段,目前業(yè)界測(cè)算ChatGPT訓(xùn)練成本約為1000萬(wàn)美元,為研發(fā)擁有部分ChatGPT能力的大模型,至少需要上千張A100訓(xùn)練卡。運(yùn)營(yíng)階段,ChatGPT云計(jì)算成本每日約200萬(wàn)美元。二是缺乏大規(guī)模并行計(jì)算工程能力。滿足大模型訓(xùn)練的算力需求不僅需要數(shù)量巨大的高性能GPU,更需要面向人工智能高度優(yōu)化的云計(jì)算平臺(tái)和相應(yīng)的工程能力。三是采購(gòu)國(guó)外先進(jìn)GPU受限,國(guó)產(chǎn)算力尚未成熟到支撐大模型研發(fā)。國(guó)產(chǎn)智能芯片不僅在算力、帶寬等性能上同英偉達(dá)A100、H100芯片有差距 (這兩款都在美方對(duì)華禁售之列) ,支持自然語(yǔ)言處理和大模型訓(xùn)練的算子庫(kù)也不夠成熟,國(guó)產(chǎn)替代仍有軟硬適配等技術(shù)問(wèn)題尚待持續(xù)優(yōu)化與解決。四是人工智能算力市場(chǎng)和服務(wù)市場(chǎng)“碎片化”加劇。全國(guó)多地主導(dǎo)建設(shè)近百個(gè)智算中心,形成一個(gè)個(gè)孤立破碎的人工智能算力和服務(wù)小市場(chǎng),中國(guó)大市場(chǎng)優(yōu)勢(shì)被消解。缺少適合大模型研發(fā)特點(diǎn)的機(jī)制。 一是力量分散。人工智能大模型具有長(zhǎng)周期、重投入、高風(fēng)險(xiǎn)等特點(diǎn)。國(guó)內(nèi)企業(yè)、高校在“大模型”“大數(shù)據(jù)”“大算力”等方面各有側(cè)重,研發(fā)力量分散,資源缺乏整合,沒(méi)有與OpenAI技術(shù)實(shí)力對(duì)標(biāo)的企業(yè)。二是資金投入不足,企業(yè)受盈利壓力很難長(zhǎng)期維持高投入。政府項(xiàng)目的支持力度與所需投入相比仍顯乏力,決策周期長(zhǎng)。三是領(lǐng)軍人才和核心團(tuán)隊(duì)缺乏。ChatGPT團(tuán)隊(duì)共87人,絕大多數(shù)擁有世界名校學(xué)歷和知名企業(yè)工作經(jīng)歷。而國(guó)內(nèi)人工智能頂級(jí)人才分散在不同機(jī)構(gòu)中,很難形成掌握核心技術(shù)并且有強(qiáng)大工程能力和項(xiàng)目經(jīng)驗(yàn)的領(lǐng)軍人物和團(tuán)隊(duì)。
相關(guān)政策建議
人工智能大模型具有重要的戰(zhàn)略意義,是未來(lái)科技競(jìng)爭(zhēng)的制高點(diǎn),也是重要的智能基礎(chǔ)設(shè)施。需從戰(zhàn)略高度重視ChatGPT引發(fā)的新一輪人工智能革命,從算法、算力、數(shù)據(jù)等方面加快布局和突破,構(gòu)建包容創(chuàng)新的監(jiān)管環(huán)境,積極應(yīng)對(duì)新一輪人工智能科技競(jìng)爭(zhēng)。 一是瞄準(zhǔn)通用人工智能“大模型”發(fā)力,加快推動(dòng)大規(guī)模應(yīng)用。 基于通用數(shù)據(jù)集的大模型是人工智能走向商業(yè)化應(yīng)用落地的重要手段,將帶動(dòng)新的產(chǎn)業(yè)和服務(wù)應(yīng)用范式。建議加快自然語(yǔ)言處理、計(jì)算機(jī)視覺(jué)以及多模態(tài)大模型攻關(guān)。同時(shí),在細(xì)分領(lǐng)域構(gòu)筑優(yōu)勢(shì),進(jìn)一步深耕垂直領(lǐng)域,從實(shí)際場(chǎng)景中積累行業(yè)數(shù)據(jù)和知識(shí),加快孵化人臉識(shí)別、音頻生產(chǎn)、財(cái)務(wù)分析、法律服務(wù)、教育培訓(xùn)等行業(yè)大模型,逐步完善模型架構(gòu)、提升參數(shù)數(shù)量,推進(jìn)應(yīng)用落地。 二是整合“大數(shù)據(jù)”,聚焦打造專業(yè)數(shù)據(jù)服務(wù)。 訓(xùn)練大模型需要優(yōu)質(zhì)的大數(shù)據(jù)集合,有些數(shù)據(jù)還需要人工標(biāo)注。收集和清洗數(shù)據(jù)是一項(xiàng)耗時(shí)較長(zhǎng)的基礎(chǔ)性工作,其質(zhì)量直接決定模型的智能程度。建議加快推動(dòng)數(shù)據(jù)資源整合共享和開發(fā)利用。ChatGPT的成功因素之一是擁有大量的優(yōu)質(zhì)訓(xùn)練數(shù)據(jù)。我國(guó)具備海量數(shù)據(jù)和豐富應(yīng)用場(chǎng)景,建議進(jìn)一步促進(jìn)圖書、期刊和傳統(tǒng)行業(yè)的優(yōu)質(zhì)數(shù)據(jù)開放,激發(fā)數(shù)據(jù)要素活力。制定政府公共數(shù)據(jù)資源開放清單,開展數(shù)據(jù)資源開放試點(diǎn),優(yōu)先開放高價(jià)值、低敏感、數(shù)據(jù)量大的民生公共數(shù)據(jù),逐步開放公共數(shù)據(jù)庫(kù)、專業(yè)數(shù)據(jù)庫(kù)等。培育專業(yè)數(shù)據(jù)服務(wù)商,培育壯大數(shù)據(jù)采集、標(biāo)注、清洗等服務(wù)產(chǎn)業(yè)。擴(kuò)大優(yōu)質(zhì)數(shù)據(jù)供給,特別是加快推進(jìn)歷年來(lái)中文圖書、紙質(zhì)文獻(xiàn)等的數(shù)字化,搭建用于人工智能大模型訓(xùn)練的優(yōu)質(zhì)數(shù)據(jù)集,擴(kuò)大面向人工智能大模型的數(shù)據(jù)供給。 三是布局“大算力”,聚焦建立算力統(tǒng)一大市場(chǎng)。 充分發(fā)揮市場(chǎng)機(jī)制的作用,堅(jiān)決遏制低水平、不可持續(xù)、缺乏商業(yè)閉環(huán)的智算中心盲目建設(shè),避免算力市場(chǎng)和人工智能服務(wù)市場(chǎng)的碎片化。支持圍繞云計(jì)算建設(shè)的各類行業(yè)訓(xùn)練數(shù)據(jù)集、人工智能訓(xùn)練平臺(tái),形成從理論模型創(chuàng)新、模型工程化到場(chǎng)景化服務(wù)的技術(shù)和商業(yè)閉環(huán),構(gòu)建統(tǒng)一、開放、有序的人工智能產(chǎn)業(yè)大生態(tài)。建立人工智能計(jì)算資源共享名錄,支持各省市超算中心、算力平臺(tái)、行業(yè)訓(xùn)練數(shù)據(jù)集、人工智能訓(xùn)練平臺(tái)等人工智能基礎(chǔ)設(shè)施資源開放共享。 四是支持以頭部企業(yè)為主體,推動(dòng)形成人工智能“大模型”攻堅(jiān)合力。 加大對(duì)頭部企業(yè)開展大模型核心技術(shù)攻關(guān)的支持力度,發(fā)揮重點(diǎn)企業(yè)和研究機(jī)構(gòu)的數(shù)據(jù)、算力、算法和人才優(yōu)勢(shì),聯(lián)合產(chǎn)業(yè)鏈上下游企業(yè)、高校院所、新型研發(fā)機(jī)構(gòu),協(xié)同開展科研攻關(guān),加快推出國(guó)產(chǎn)大模型拳頭產(chǎn)品。五是實(shí)施包容審慎的監(jiān)管,為新生事物發(fā)展留足空間。 類ChatGPT產(chǎn)品作為新生事物,不可能十全十美,鼓勵(lì)發(fā)展是主旋律。ChatGPT初期也會(huì)不斷“犯錯(cuò)誤”,但其自身也逐步建立了技術(shù)機(jī)制,針對(duì)內(nèi)容、倫理等相關(guān)風(fēng)險(xiǎn)進(jìn)行了過(guò)濾與阻斷,經(jīng)過(guò)用戶反饋、專家機(jī)制優(yōu)化迭代后逐步成熟完善。依托優(yōu)良的網(wǎng)絡(luò)環(huán)境,豐富的內(nèi)容治理經(jīng)驗(yàn),以及完善的AI監(jiān)管框架,我國(guó)完全具備對(duì)于以ChatGPT為代表的人工智能大模型技術(shù)治理自信。因此,面對(duì)可能出現(xiàn)倫理、數(shù)據(jù)、輿情等風(fēng)險(xiǎn),要建立容錯(cuò)機(jī)制,實(shí)行沙盒監(jiān)管和敏捷治理,實(shí)現(xiàn)規(guī)范與發(fā)展的動(dòng)態(tài)平衡。
關(guān)鍵詞:
責(zé)任編輯:Rex_23